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ABSTRACT
With the emergence of Artificial Intelligence (AI), new attention
has been given to implement AI algorithms on resource constrained
tiny devices to expand the application domain of IoT. Multimodal
Learning has recently become very popular with the classification
task due to its impressive performance for both image and audio
event classification. This paper presents TinyM2Net - a flexible
system algorithm co-designed multimodal learning framework for
resource constrained tiny devices. The framework was designed
to be evaluated on two different case-studies: COVID-19 detection
from multimodal audio recordings and battle field object detection
frommultimodal images and audios. In order to compress the model
to implement on tiny devices, substantial network architecture opti-
mization and mixed precision quantization were performed (mixed
8-bit and 4-bit). TinyM2Net shows that even a tiny multimodal
learning model can improve the classification performance than
that of any unimodal frameworks. The most compressed TinyM2Net
achieves 88.4% COVID-19 detection accuracy (14.5% improvement
from unimodal base model) and 96.8% battle field object detection
accuracy (3.9% improvement from unimodal base model). Finally,
we test our TinyM2Net models on a Raspberry Pi 4 to see how they
perform when deployed to a resource constrained tiny device.
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1 INTRODUCTION
Artificial Intelligence (AI) has a huge impact on our daily lives
now-a-days. In our daily lives, AI has brought convenience and
ease of use to the table. The AI devices are now able to perform
computationally intensive tasks and eliminate human error from the
system to a large extent, making this convenience possible. We see
AI techniques and devices being used in domains such as medical
diagnosis, security and combat fields, robotics, vision analytics,
knowledge reasoning, navigation, etc. today. To integrate AI in our
day-to-day life, it is being implemented on resource constrained
mobile and edge platforms.With the exponential growth of resource
constrained micro-controller (MCU) and micro-processor (MPU)
powered devices, a new generation of neural networks has emerged,
one that is smaller in size and more concerned with model efficiency
than model accuracy. These low-cost, low-energy MCUs and MPUs
open up a whole new world of tiny machine learning (TinyML)
possibilities. We can directly do data analytics near the sensor
by running deep learning models on very tiny devices, greatly
expanding the field of AI applications.

Modern IoT and wearable devices, such as activity trackers, en-
vironmental sensors, images, and audio sensors can generate large
volumes of data on a regular basis. Modern AI is increasingly re-
liant on data from numerous sources in order to produce more
accurate findings. Learning process for human is multimodal. We
human can take our decision by processing different modalities of
data. To mimic human-like behavior, AI algorithms should integrate
multimodal data as well. Multimodal learning combines disparate,
heterogeneous data from a variety of sensors and data sources into
a single model. In contrast to standard unimodal learning systems,
multimodal systems can convey complimentary information about
one another, which becomes apparent only when both are inte-
grated into the learning process. Thus, learning-based systems that
incorporate data from many modalities can generate more robust
inference or even novel insights, which would be unachievable in a
unimodal system. Multimodal learning has two key advantages. To
begin, several sensors observing the same data can produce more
robust predictions, as recognizing changes in it may need the pres-
ence of both modalities. Second, the integration of many sensors
enables the capture of complementing data or trends that individual
modalities may miss. However, increased model parameters and
computations limit multimodal learning to be adopted for resource
constrainded edge and tiny ML applications.
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Commodity MCUs and MPUs have a very limited resource in
terms of memory (SRAM) and storage (Flash) budget. A typical
MCU has an SRAM of less than 512kB, which is insufficient for in-
stalling the majority of off-the-shelf deep learning networks. Even
on more capable hardware such as the Raspberry Pi 4, configuring
inference to run in the L2 cache (1MB) can dramatically increase en-
ergy efficiency. These new issues add to the difficulty of performing
efficient multimodal learning inference with a low peak memory
consumption. In this paper, we address this challenge and imple-
ment multimodal learning on tiny hardware. We take advantages
of state-of-the-art compression techniques and combined them
with computationally relaxed layers to implement energy efficient
multimodal learning on tiny processing hardware. We proposed a
flexible system algorithm co-designed framework TinyM2Net which
is re-configurable in terms of input data modality and data shapes,
number of layers, filter sizes etc. hyper-parameters for the sake of
application requirements. We evaluated TinyM2Net with two dif-
ferent case-studies: audio processing with multimodal audios and
object detection with multimodal images and audios. TinyM2Net
is then implemented on commodity tiny MPU, Raspberry Pi 4 to
measure real-time performance on tiny hardware. The main contri-
butions of this paper are as follows:

• Propose TinyM2Net, a novel flexible system-algorithm co-
designed multimodal learning framework for resource con-
strained devices. TinyM2Net that can take multimodal inputs
(images and audios) and be re-configured for application spe-
cific requirements. TinyM2Net allows the system and algo-
rithms to quickly integrate new sensors data that are cus-
tomized to various types of scenarios.

• Performnetwork architecture optimization, andmixed-precision
quantization with the purpose of decreasing computation com-
plexity and memory size for resource constrained hardware
implementation while maintaining accuracy.

• Evaluated proposed TinyM2Net for two different case-studies.
Case-study 1 includes Covid-19 detection from multimodal
cough and speech audio recordings. Case-study 2 includes bat-
tlefield object detection using multimodal images and audios.

• Implement TinyM2Net on commodity microprocessor unit,
Raspberry Pi 4. We measured inference time while it was in
use, as well as providing the appropriate power profiling to
ensure that our system is adaptable. To be called a real-time
implementable tinyml system, TinyM2Net meets all of the
requirements.

2 RELATEDWORKS
Authors in [17] presented a high level overview on the optimiza-
tion techniques of deep neural networks (DNNs) for tinyML on
device inferences. TinyML model optimization includes different
algorithms of Parameter Search, Sparsification and Quantization
techniques. Element-wise pruning[19], Structured Pruning [4, 13]
these techniques reduces the unimportant weights and compress
the models to be implemented on tinyML devices. Extreme low
precision quantization [3, 14] and mixed precision quantization
[9, 11, 27, 28, 30] is adopted by the researchers to decrease the mem-
ory requirements of the DNN models. MCUNet [15], MicroNets
[6] are proposed to deploy DNN models on micro-controller units

(MCU). Recently, multimodal learning attracts researchers to im-
prove the classification accuracy of the models integrating differ-
ent modalities of data fusion [1, 7, 16]. However, implementation
of multimodal learning into resource constrained tiny hardware
is very limited due to its large model sizes. We present a novel
multimodal learning framework TinyM2Net which is system al-
gorithm co-designed and different model compression techniques
were implemented to compress the large multimodal models to be
implemented on tiny devices.

3 TinyM2Net FRAMEWORK
Figure 1 shows the proposed TinyM2Net framework along with
its detailed architecture. Based on the case studies we mention in
section 5, TinyM2Net is able to integrate two different modalities
of data and classify them. Proposed TinyM2Net is designed based
on mainly convolutional neural networks (CNN). CNN performed
very promising with images and audio data classification previously
which is the reason behind choosing CNN as our base model.

We will evaluate TinyM2Net on two different case studies de-
scribed in details in section 5. Case-study 1 is detecting COVID-19
signatures using two different modalities of audio recordings, cough
sound and speech sound. Case-study 2 is based on detecting bat-
tle field object using images and audios. While processing audio
data, we have divided the whole audio into shorted window frames,
the size of those frames are variable based on application require-
ments. Then the window frames are converted into Mel-Frequency
Cepstral Coefficients (MFCCs) spectrograms. In the next step, two
different data modalities, whether be images or audios, are sent
to the CNN layers for feature extraction. The number of layers of
our CNN layers can be adjusted to suit application specific require-
ments. Maxpooling layers is used to reduce the size of the feature
map. A number of fully interconnected layers are applied once the
output is flattened to achieve the needed tiny feature map size in
order to isolate enough information with linkages between nodes.
The outputs from two parallel feature extraction layers from two
data modalities are then concatenated and processed through fully
connected layers to produce the final label. The activation function
for each layer is a rectified linear unit (ReLU). Softmax activation
function is used to generate a probability distribution for the final
layer.

4 MODEL COMPRESSION FOR TINY DEVICES
Traditional CNNmodels are very notorious for being bulky in terms
of memory and computation requirements. To implement CNN on
low powered embedded tiny devices, researchers proposed various
compression techniques which results in highly optimized CNN
models. Our proposed TinyM2Net adopts different model compres-
sion techniques which optimizes the network architectures and
memory requirements. TinyM2Net adopts Depthwise Separable
CNN (DS-CNN) to reduce the computation from traditional CNN
layers. To have improvement on memory requirements, TinyM2Net
adopts low precision and mixed-precision (MP) quantization. We
emphasize on MP quantization as uniform low precision quantiza-
tion degrades model accuracy.
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Figure 1: The proposed TinyM2Net framework for multimodal learning on tiny hardwares. TinyM2Net is flexible in terms of number of
input, number of layers and hyper-parameters based on application specific requirement. New data modality suited for various settings can
be readily included into the device. Some of the input information is images, other input data can be auditory.

Table 1: Number of parameter and required computations equa-
tions for different types of convolution layers.

CNN types No. of Parameters No. of Computations
Traditional 𝑀 × 𝐷2

𝑘
× 𝑁 𝑀 × 𝐷2

𝑘
× 𝐷2

𝑝 × 𝑁

Depthwise Separable 𝑀 × 𝐷2
𝑘
+𝑀 × 𝑁 𝑀 × 𝐷2

𝑝 × 𝐷2
𝑘
+𝑀 × 𝐷2

𝑝 × 𝑁

4.1 Network Architecture Optimization with
DS-CNN

Figure 3 presents the conventions and the techniques that is done
in traditional CNN and DS-CNN . In traditional CNN, if the input
is of size 𝐷 𝑓 × 𝐷 𝑓 ×𝑀 and 𝑁 is the number of filters having a
size 𝐷𝑘 × 𝐷𝑘 ×𝑀 then output of this layer without zero padding
applied is of size 𝐷𝑝 ×𝐷𝑝 ×𝑀 . If the stride for the convolution is 𝑆
then 𝐷𝑝 is determined by the following equation:

𝐷𝑝 =
𝐷 𝑓 − 𝐷𝑘

𝑆
+ 1 (1)

In this layer, the filter convolves over the input by performing
element wise multiplication and summing all the values. A very
important note is that depth of the filter is always same as depth of
the input given to this layer. The computational cost for traditional
convolution layer is𝑀 × 𝐷2

𝑘
× 𝐷2

𝑝 × 𝑁 [10].
Depthwise Separable convolution is a combination of depthwise

and pointwise convolution [12]. In contrast to traditional CNNs,
which apply convolution to all 𝑀 channels at once, depthwise
operations only apply convolution to a single channel at a time. So
here the filters/kernels will be of size 𝐷𝑘 × 𝐷𝑘 × 1. As there are𝑀
channels at the input,𝑀 numbers of such filters are needed. This
will produce a output of size 𝐷𝑝 × 𝐷𝑝 ×𝑀 . A single convolution
operation require𝐷𝑘 ×𝐷𝑘 multiplications. Since the filter are slided
by 𝐷𝑝 × 𝐷𝑝 times across all the𝑀 channels. The total number of
computation for one depthwise convolution comes to be𝑀 ×𝐷2

𝑝 ×
𝐷2
𝑘
. In point-wise operation, a 1 × 1 convolution is applied on the

𝑀 channels. The filter shape for this operation will be 1 × 1 ×𝑀 . If
we use 𝑁 such filters, the output shape becomes 𝐷𝑝 ×𝐷𝑝 ×𝑁 . One
convolution operation in this needs 1×𝑀 multiplications. The total
number of operations for one pointwise convolution is𝑀 ×𝐷2

𝑝 ×𝑁 .
Therefore, total computational cost of one depthwise separable

convolution is 𝑀 × 𝐷2
𝑝 × 𝐷2

𝑘
+ 𝑀 × 𝐷2

𝑝 × 𝑁 [10]. Table 1 shows
the equations required for calculating the number of parameters
and number of computations for each of the traditional CNN and
DS-CNN layers. Here 𝐷𝑘 × 𝐷𝑘 is the size of the filter, 𝐷𝑝 × 𝐷𝑝 is
the size of the output,𝑀 is number the of input channels and 𝑁 is
the number of output channels.

4.2 Model Quantization
To have lesser memory requirements, model quantization is now at-
tracting to the researchers to design tinyMLmodels. The accuracy of
a model can be significantly degraded if it is uniformly quantized to
low bit precision. It is possible to address this with mixed-precision
quantization in which each layer is quantized with different bit
precision. The main idea behind mixed precision quantization is to
keep sensitive layers at higher precision and insensitive layers at
lower precision. However, the search space for this bit setting grows
exponentially as the number of layers increase, which is challeng-
ing. Various methods have been offered to deal with this enormous
search area. Reinforcement learning (RL) and Neural Architecture
Search (NAS) have recently been presented as efficient approaches
for searching the search space. As a result, these methods [9, 27, 28]
often require a huge amount of computational resources and their
performance is highly dependent on hyperparameters and even
initialization. An algorithm known as Integer Linear Programming
(ILP) is employed in [11, 30]. ILP is very light weight and gives
result within second. We adopted ILP and formulated our problem
following the methodology described in [30], simplifying some con-
straints to get the mixed precision settings for our TinyM2Net. ILP
equations were solved using a python module called Pulp.

To tackle the accuracy degradation with extreme low bit pre-
cision quantization, we chose two different bit precision settings
(𝑋 = 2), INT4 and INT8 for our TinyM2Net framework. As our
TinyM2Net is flexible in terms of number of layers, for a model with
𝑌 layers, the search space for ILP becomes𝑋𝑌 . ILP will find the best
bit precision choices from 𝑋𝑌 search spaces to have optimal trade-
off between model perturbation Ω and user specific constraints i.e.
model size and Bit Operations, BOPS. Each of these bit-precision
options has the potential to produce different model perturbation.
We assumed the perturbation for each layer are independent to
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Figure 2: Detailed operations inside traditional CNN and DS-CNN.

each other [30] (i.e., Ω =
∑𝑌
𝑖=1 Ω

𝑥𝑖
𝑖
, where Ω𝑥𝑖

𝑖
is the perturbation

of i-th layer with 𝑥𝑖 bit). This enables us to pre-calculate the sen-
sitivity of each layer independently, with only 𝑋𝑌 computations
required. Hessian based perturbation, presented in [30] is used as
sensitivity metric. Minimizing this sensitivity, ILP tries to find the
right bit precision settings. The ILP equations would be as follows:
Objective:

min {𝑥𝑖 }𝑌𝑖=1
𝑌∑︁
𝑖=1

Ω (𝑥𝑖 )
𝑖

, (2)

Subject to:
𝑌∑︁
𝑖=1

𝜇
(𝑥𝑖 )
𝑖

≤ 𝑀𝑜𝑑𝑒𝑙 𝑆𝑖𝑧𝑒, (3)

𝑌∑︁
𝑖=1

𝛽
(𝑥𝑖 )
𝑖

≤ 𝐵𝑂𝑃𝑆 𝐿𝑖𝑚𝑖𝑡, (4)

Here, 𝜇 (𝑥𝑖 )
𝑖

denotes the size of the 𝑖-th layer with 𝑥𝑖 bit quantiza-
tion and 𝛽

(𝑥𝑖 )
𝑖

is the corresponding BOPS required for computing
that layer. All the equations are adopted from [30]. We have consid-
ered the bit precision for both weights and activations to be same
so that the mathematical operations become efficient. The overall
MP quantization process is summarized in figure [somethin].

FP32 
Model

2. Profile Quantized
Models on
hardware

1. Apply Uniform
Quantization

Per-layer:
1. Sensitivity
2. Size
3. Bops

for each INT8,
INT4

Uniform 
INT8

Uniform 
INT4

Mixed-
precision 
Configuration 

3. Optimize with all
constraints (ILP)

Figure 3: Finding Mixed Precision Bit Setting Using Integer Linear
Programming (ILP)

5 TinyM2Net EVALUATION
We evaluated proposed TinyM2Net with two very important real-
world case studies: COVID-19 detection from multimodal audios
and Battlefield Object Detection from multimodal images and au-
dios. Both of the case studies proves to be important sectors where
tinyML implementations is much required.

5.1 Case Study 1: Covid Detection from
Multimodal Audio Recordings

Combining numerous data sources has always been a high priority
topic, but with the advent of new AI-based learning algorithms, it
has become critical to combine the complementary capabilities of
distinct data sources for effective diagnosis, treatment, prognosis,
and planning in a variety of medical applications. With the onset of

COVID-19 pandemic, patient pre-screening from passively recorded
audios has become an active area of research. Therefore, a bunch
of unimodal and multimodal COVID-19 audio dataset have been
presented [5, 8, 20, 23]. The ultimate goal in this research is to
provide COVID-19 pre-screening mobile or tiny devices. Figure 4
shows the highlevel overview of the evaluation of TinyM2Net in
terms of COVID-19 detection.

Figure 4: The proposed TinyM2Net framework to detect
COVID-19 from two different modalities of audios, cough
audios and speech audios.

5.1.1 Dataset Description. We have used the dataset from the
COVID-19 cough sub-challenge (CCS) and the COVID-19 speech
sub-challenge (CSS) from the Inter Speech 2021 ComParE challenge
[22]. This dataset is a subset of the bigger dataset [8] collected by
University of Cambridge. In this dataset there are 929 cough audios
from 397 participants and 893 speech recordings from 366 par-
ticipents. Each recording included a COVID-19 test result that was
self-reported by the participant. To build the two-class classification
task, the original COVID-19 test results were mapped to positive
(designated as ‘P’) or negative (designated as ‘N’) categories.

5.1.2 Experimental Setups, Results and Analysis. To create a
balanced multimodal dataset we have taken 893 cough recordings
from 366 participants matching their IDs mentioned in the metadata
so that we have both cough and speech recordings contributing
from a same person. Then we have divided the audios into 2 sec
audio chunks and produces 6000 random samples out of that. Then
we converted them into MFCC spectrogram and passed them to
TinyM2Net. TinyM2Net process two different modalities of audios
with its parallel CNN layers, extracts features, combines them and
classify at the end as binary classification.We have used the 1st layer
as traditional CNN and the later layers as DS-CNN. The detailed
network architecture is mentioned in table 2.

We trained our model with categorical cross-entropy loss and
Adam optimizer. We achieved 90.4% classification accuracy with
FP32 bit precision. We then quantize our model to uniform 8-bit and
4-bit precision and achieved 89.6% and 83.6% classification accuracy.
OurMP quantization technique improves the classification accuracy
to 88.4%. The best baseline accuracies for unimodal COVID-19
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Table 2: Details of the network architecture for multimodal
COVID-19 detection

Layers Description Output
Input Layer Cough Audio MFCC Vector 203×20 × 1
Input Layer Speech Audio MFCC Vector 333×13×1
Conv2D Kernels = 16 ×(3×3) - BN - ReLU 201×18×16
Conv2D Kernels = 64 ×(3×3) - BN- ReLU 333×13×64
Separable Conv2D Kernels = 32 ×(3×3) - ReLU 199x16x32
Separable Conv2D Kernels = 32 ×(3×3) - ReLU 329×9×32
MaxPooling2D Pool size = (3×3), 20% Dropout 66×5×32
MaxPooling2D Pool size = (2×2), 20% Dropout 164×4×32
Separable Conv2D Kernels = 32×(3×3) - ReLU 64×3×32
Separable Conv2D Kernels = 16×(3×3) - ReLU 162 × 2 ×16
MaxPooling2D Pool size = (×3), 20% Dropout 21×1×32
MaxPooling2D Pool size = (2×2), 20% Dropout 81×1×16
Flatten 21×1×32 672
Flatten 81×1×16 1296
Dense Neurons = 32 - ReLU - 20% Dropout 32
Dense Neurons = 32 - ReLU - 20% Dropout 32
Concatenate 32 + 32 64
Dense Neurons = 256 - ReLU - 20% Dropout 256
Dense Neurons = 128 - ReLU - 20% Dropout 128
Dense Neurons = 2 - Softmax 2

detection from cough audio and speech audio were 73.9% and 72.1%
[? ]. Our TinyM2Net outperforms the baseline results by 14.5%.

5.2 Case Study 2: Battlefield Component
Detection from Multimodal Images and
Audios

Research in the field of computer vision has always focused on the
detection of specific targets in an image. Research on the identifica-
tion of armored vehicles in the battlefield environment, as well as
the deployment dynamics, recognition and tracking, precise strike,
and so on, are critical military objectives. There are still many diffi-
culties in detecting armored vehicles on the battlefield because of
the complication of the environment [29, 31]. Authors in [18, 24]
proposed multimodal learning approach in object detection task.
We have presented a novel multimodal learning approach in battle-
field object detection based on image and audio modality. Figure 5
shows the highlevel overview of the evaluation of TinyM2Net in
terms of battlefield object detection.

Figure 5: The proposed TinyM2Net framework to detect four differ-
ent battlefield objects, Helicopter, Tank, Bomb, Gun from two differ-
ent modalities, images and audios.

5.2.1 DatasetDescription. As open-sourced dataset for research
on battlefield environment is very limited, we have created our own

Table 3: Details of the network architecture for multimodal battle
field object detection

Layers Description Output
Input Layer Audio MFCC Vector 44×13×1
Input Layer Image Vector 32×32×3
Conv2D Kernels = 64×(3 ×3) - BN - ReLU 44×13×64
Conv2D Kernels = 64 ×(3×3)- BN - ReLU 32×32×64
Separable Conv2D Kernels = 32 ×(3×3) - ReLU 44×13×32
Separable Conv2D Kernels = 32 ×(3×3) - ReLU 32×32×64
MaxPooling2D Pool size = (2×2), 20% Dropout 22×6×32
MaxPooling2D Pool size = (2×2), 20% Dropout 16×16×32
Separable Conv2D Kernels = 64 ×(3×3) - ReLU 22 × 6 ×64
Separable Conv2D Kernels = 64 ×(3×3) - ReLU 16 × 16 ×64
MaxPooling2D Pool size = (2×2), 20% Dropout 11×3×64
MaxPooling2D Pool size = (2×2), 20% Dropout 8×8×64
Flatten 11×3×64 2112
Flatten 8×8×64 4096
Dense Neurons = 64 - ReLU - 20% Dropout 64
Dense Neurons = 64 - ReLU - 20% Dropout 64
Concatenate 64 + 64 12
Dense Neurons = 64 - ReLU - 20% Dropout 64
Dense Neurons = 4 - Softmax 4

dataset for this case-study. This also contributed to the novelty of
our work. We have created a dataset for multiclass classification
problem with 4 classes as Helicopter, Bomb, Gun, and Tank. We
have selected 4 publicly available YouTube videos [2, 21, 25, 26]
from where we extracted the images and corresponding audios
of Helicopter, Bomb, Gun, and Tank. Sampling rate of the image
extraction was one frame per second. We have collected the images
in .jpg format. We extracted in total 2745 images for all the 4 classes.
On the contrary, sampling frequency was 22050Hz for 1 sec audio.
Length of our audio was 1 sec. We then converted the audio signal
into MFCCs. We extracted in total 2745 MFCC spectrogram for 4
classes. The total number of extracted images and corresponding
audios were as follows: Helicopter-1066, Gun - 1008, Bomb - 161,
Tank- 510.

5.2.2 Experimental Setups, Results and Analysis. We passed
both the input and corresponding audio MFCCs to TinyM2Net.
TinyM2Net process two different modalities with its parallel CNN
layers, extracts features, combines them and classify at the end
as multiclass classification. We have used the 1st layer as tradi-
tional CNN and the later layers as DS-CNN. The detailed network
architecture is mentioned in table 3.

We trained our model with categorical cross-entropy loss and
Adam optimizer. We achieved 98.5% classification accuracy with
FP32 bit precision. We then quantize our model to uniform 8-bit
and 4-bit precision and achieved 97.9% and 88.7% classification ac-
curacy. Our MP quantization technique improves the classification
accuracy to 97.5% which is very comparable to both 8-bit and 32-
bit quantized models. We achieved 93.6% classification accuracy
with unimodal (only image data) implementation. Our multimodal
approach improved the object detection accuracy to 3.9%.
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Table 4: Summary of the TinyM2Net Framework Evaluation Re-
sults

Case
Studies Quantization Accuracy

(%)
Model Size

(KB)
1 Floating Points 90.4 845
1 W8A8 (uniform 8) 89.6 216
1 W4/8A4/8 (MP) 88.4 145
1 W4A4 (uniform 4) 83.6 107
2 Floating Points 98.5 1605
2 W8A8 (uniform 8) 97.9 407
2 W4/8A4/8 (MP) 96.8 269
2 W4A4 (uniform 4) 91.3 205

Table 5: Implementation of the TinyM2Net framework to resource
constrained Raspberry Pi 4 device

Case Studies Inference Time
(S)

Power
(mW)

1 1.2 798
2 1.7 959

6 TinyM2Net RUNNING ON TINY DEVICES
The inference stage must be implemented on resource constrained
tiny devices in order to make the TinyM2Net system real-time. We
implemented TinyM2Net on Rasberry Pi 4 which has quad-core
Cortex-A72 (ARM v8) and 2GB LPDDR4 memory. Performance
evaluation of the TinyM2Net on resource constrained Raspberry Pi
4 was based on two metrics: inference time and power consumption
during inference. The capacity of a framework to run in real time
is determined by its inference time or running time. Data loading,
model loading, and visual display of the final result all contribute to
this inference time’s length. The inference time was measured with
the help of Raspbian OS’s ‘time’ function. We used a batch size of 1,
which is the time it takes to process a single data point, to calculate
the inference time. We also need to consider the model’s power
profile when deploying it in the actual world. The running power of
any deepmodel should be well within the device’s sustainable range.
Power consumption is calculated by deducting idle power from the
peak power indicated during inference operation and reporting the
result. For reporting, we use the metric unit milliwatt (mW), and
a USB power meter has been employed. The inference time and
required power during inference with the most compressed models
are mentioned in table 5 for both of the case studies.

7 CONCLUSION
This paper presents TinyM2Net, a flexible system algorithm co-
designed multimodal learning framework which employs as much
as correlated information a multimodal dataset provides in an at-
tempt to exploit deep learning algorithms evaluating two important
tinyML evaluation case-studies: to detect the signature of COVID-
19 into participents’ cough and speech sound and battle field object
detection from multimodal images and audios. To implement into
tiny hardware, extensive model compression was done in terms of
networks architecture optimization and MP quantization (mixed
8-bit and 4-bit). The most compressed TinyM2Net achieves 88.4%
COVID-19 detection accuracy and 96.8% battle field object detection
accuracy. Finally, we test our TinyM2Net model on a Raspberry Pi 4

to see how they perform when deployed to a resource constrained
tiny device.
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